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We study quantum imaging in a triangular quantum corral that is embedded in a superconducting
host system with s-wave symmetry. We show that the corral’s eigenmode spectrum can be employed
to create multiple images of a quantum candle, thus acting as a quantum copying machine. We obtain
new selection rules for the formation of quantum images that arise from the interplay of the corral’s
geometry and the location of quantum candles. In more complex corral structures, we show that
quantum images can be projected “around the corner”.

PACS numbers: 73.22.-f, 73.22.Gk, 72.10.Fk, 74.25.Jb

Over the last few years, a growing number of excit-
ing quantum phenomena has been observed [1–5] that
arise from the interplay between the geometry and quan-
tum properties of nanoscale atomic structures and their
coupling to a fermionic quantum many-body systems.
Among these phenomena are the formation of quantum

mirages in elliptical quantum corrals [1], electronic life-
time effects in triangular quantum corrals [3], and magne-
tization effects in triangular Co islands [4]. While the in-
vestigation of these phenomena is of general fundamental
interest, it could potentially lead to important applica-
tions in the field of spin electronics and quantum informa-
tion technology [6]. Theoretically, much progress in un-
derstanding the interaction between nanostructures and
quantum many-body systems has been made by study-
ing the formation of a single quantum image in quantum
corrals that are embedded in metallic [7, 8] or supercon-
ducting [9] host systems.

In this Letter, we argue that complex nanoscale struc-
tures are prototype systems for the observation of novel
quantum phenomena. In particular, we demonstrate that
a triangular quantum corral acts as a quantum copying

machine by creating multiple quantum images of a quan-

tum candle, i.e., a characteristic feature in the density-of-
states (DOS) of the host system. As the quantum can-
dle, we employ the spectroscopic signature of a fermionic
bound state induced by a magnetic impurity in a su-
perconducting host system with s-wave symmetry. We
show that the formation of quantum images inside a tri-
angular corral consisting of non-magnetic impurities is
determined by a set of selection rules that arise from the
interplay between the corral’s geometry and the location
of quantum candles. Moreover, we demonstrate that such
a corral can suppress the formation of fermionic bound
states, leading to the important result that non-magnetic

impurities can reverse the pair-breaking effect of a mag-

netic defect. Finally, we show that double triangular cor-

rals allow the formation of quantum images “around the
corner”, opening the interesting possibility to custom de-
sign the imaging properties of quantum corrals.

In order to study novel quantum effects arising from
the interaction of a triangular quantum corral with a

superconducting host system, we employ a generalized
scattering T̂ -matrix theory [9, 10, 12]. The host system’s
local Greens function (in Nambu-notation) in the pres-
ence of the corral is given by

Ĝ(r, r′, ωn) = Ĝ0(r, r
′, ωn)

+
N

∑

i,j=1

Ĝ0(r, ri, ωn)T̂ (ri, rj , ωn)Ĝ0(rj , r
′, ωn) , (1)

where the sum runs over the locations ri (i = 1, .., N)
of the N impurities forming the corral. The T̂ -matrix
follows from the Bethe-Salpeter equation

T̂ (ri, rj , ωn) = V̂i δi,j

+V̂i

N
∑

l=1

Ĝ0(ri, rl, ωn)T̂ (rl, rj , ωn) ; (2)

V̂i =
1

2
(Uiσ0 + JiSσ3) τ3 , (3)

and the electronic Greens function of the unperturbed
(clean) system in momentum space is

Ĝ−1
0 (k, iωn) = [iωnτ0 − εkτ3]σ0 +∆0τ2σ2 . (4)

Ui(Ji) is the potential (magnetic) scattering strength of
the impurity at site ri, S is the spin of a magnetic impu-
rity, and σ, τ are the Pauli-matrices in spin and Nambu
space, respectively. ∆0 is the superconducting s-wave
gap, and εk is the host system’s normal state disper-
sion. In this approach, magnetic impurities are treated
as classical variables [12] (corresponding to a large-S ap-
proximation) since J is taken to be smaller than the crit-
ical value Jc necessary for a Kondo-effect to occur in an
s-wave superconductor [11], in full agreement with ex-
periment [13]. Finally, the local DOS, N(r, ω), shown
below, is obtained numerically from Eqs.(1)-(4) with
N(r, ω) = A11 + A22, Aii(r, ω) = −Im Ĝii(r, ω + iδ)/π
and δ = 0.1 meV.

Motivated by recent experiments [3], we first study
the eigenmode spectrum of a triangular equilateral quan-
tum corral embedded in a normal host system. To facil-
itate comparison with experiment, we consider a two-
dimensional host system with a triangular lattice (lattice
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FIG. 1: (a)-(h) Intensity plot of the DOS for the eight lowest
energy eigenmodes (eigenmode energy is shown in the upper
right corner) in the unitary scattering limit (Ui = 4 eV).
(m,l) are the quantum numbers of the TPW eigenstate. (i),(j)
Eigenmodes of the corral for Ui = 0.5 eV.

constant a0 = 1) and εk = k2/2m − µ (h̄ = 1) where
µ = −65 meV is the chemical potential and kF = 0.24
the Fermi wave-vector (qualitatively similar results to the
ones shown below are expected for a 3D host system). In
Fig. 1(a)-(h) we present a spatial DOS plot of the eight
lowest energy eigenmodes [with light (dark) regions in-
dicating a large (small) DOS] for a corral consisting of
90 non-magnetic impurities with Ui = 4 eV (the impu-
rities are represented by filled yellow squares, separated
by ∆r = 2). In this unitary scattering limit, the eigen-
modes (i.e., their spatial structure and ordering in en-
ergy) are well described by the eigenstates, φlm, of an
infinitely deep triangular potential well (TPW) [14] [the
corresponding quantum numbers (m, l) are shown in the
upper left corner of Figs. 1(a)-(h)]. With decreasing Ui,
the energy separation of the eigenmodes is reduced. In
addition, new eigenmodes emerge, such as the ones shown
in Figs. 1(i),(j) for Ui = 0.5 eV, which are similar to those
observed experimentally (cf. Fig.1(d) in Ref. [3]).

The spatial form of the corral’s eigenmodes opens the
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FIG. 2: (a) DOS as a function of frequency. (b),(c) Intensity
plot of the DOS at the bound states energies (b) ω = −2.4
meV and (c) ω = 2.4 meV.

possibility to form multiple quantum mirages. To demon-
strate the qualitative nature of this effect, we retain the
above parameters and take the superconducting gap to
be ∆0 = 4 meV, yielding a superconducting coherence
length ξc = kF /(m∆0) = 135. As the quantum can-
dle, whose image is formed, we use the spectroscopic sig-
nature of a fermionic bound state induced by a single
magnetic impurity (Ji = 1.0 eV), located in the cen-
ter of the corral at r1 = (0, 0). This signature consists
of a particlelike and holelike peak in the DOS at ener-

gies Ω
(1,2)
b = ∓2.4 meV, as shown in Fig. 2a where we

plot the DOS at r1. In Figs. 2(b),(c) we present spatial

DOS plots at Ω
(1,2)
b (the location of the magnetic impu-

rity is shown as a filled red circle). The formation of
the impurity bound state is accompanied by the excita-
tion of the (2, 4)-eigenmode [Fig. 1(c)] and the emergence
of three images of the bound state peaks inside the cor-
ral. Note that only eigenmodes that possesses sufficiently
large spectral weight at the impurity site and are close in

energy to Ω
(1,2)
b are relevant for the formation of quan-

tum images. Since the energy of the (2, 4)-eigenmode,

E(2,4) = −4 meV, is closer to Ω
(1)
b than to Ω

(2)
b , the

spectral weight of the quantum images is larger at Ω
(1)
b

than at Ω
(2)
b . This result demonstrates that a triangular

quantum corral acts as a quantum copying machine for
distinct features in the DOS. Moreover, the corral’s imag-
ing properties can be specifically designed since chang-
ing the corral’s size leads to a shift in the eigenmode
energies. For example, in a corral consisting of 117 im-
purities, the imaging properties are determined by the
(1, 5)-mode [E(1,5) = 0 meV] leading to a different spa-
tial pattern of the quantum images [15]. Finally, we note
as an important result that the formation of an impurity
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bound state can be completely suppressed inside the cor-
ral. To demonstrate this effect, we place the magnetic
impurity at a node [r1 = (−5,−5)] of the (2, 4)- and
(1, 4)-eigenmodes, as shown in Fig. 3(a). In this case, the
DOS at r1 [Fig. 3(b)] does not possess any signature of
an induced bound state and hence, no image is observed
anywhere inside the corral. This complete suppression
arises from the incompatibility of the bound state’s phase
shift and wave-vector with the boundary conditions pro-
vided by the corral’s wall. Thus, an impurity bound state
can only be formed if it can couple to one of the corral’s
eigenmodes. The importance of this result lies in the
fact that while non-magnetic impurities cannot induce a
fermionic bound state in an s-wave superconductor, they
can nevertheless suppress its formation and thus reverse
the pair-breaking effect of a magnetic defect.
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FIG. 3: (a) Intensity plot of the DOS for |ω| > ∆0. (b) DOS
at the site of the magnetic impurity.

Next, we consider the effects of two magnetic impu-
rities located inside the corral at r1 = (−10,−10) and
r2 = (20,−10). The angle, α between the impurity
spins is determined by the interaction between them. In
what follows we assume a ferromagnetic alignment of the
spins (α = 0), however, results similar to those shown
below are also obtained for α 6= 0. Quantum interfer-
ence of scattered electronic waves leads to the forma-
tion of even and odd impurity bound states (with re-
spect to a vertical axis midway between the two impu-
rities) and a splitting of the bound state energies. As

a result, the DOS exhibits four peaks at Ω
(1,2)
o = ∓2.8

meV and Ω
(1,2)
e = ∓2.0 meV [see Fig. 4(a)]. The for-

mation of quantum images requires that the even/odd
bound states couple to corral eigenmodes of the same
symmetry. The eigenstates of a TPW and thus the cor-
ral eigenmodes transform under reflection at the vertical
axis as φlm → − exp [i2π(m+ l)/3]φ∗lm [14]. While φ24

is imaginary and thus even under reflection, an even and

odd wave-function is formed from φ14 via φ
(e,o)
14 (x) =

φ14(x) ± φ14(−x). In Figs. 4(b),(e) we plot the DOS at

Ω
(1,2)
o whose spatial form agrees well with that of |φ

(o)
14 |

2

shown in the inset of Fig. 4(a). We therefore conclude

that Ω
(1,2)
o are the frequencies of the odd bound state,

while Ω
(1,2)
e are the energies of the even bound state

whose spatial DOS is shown in Figs. 4(c),(d). The imag-
ing properties of the corral are thus frequency dependent
due to the interplay between the corral’s geometry and

2.0 meV (d)

 

Frequency  [meV]

D
e
n
si
ty

 o
f 
S
ta
te
s 
[a
rb
. 
u
n
its
]

clean case

center site
impurity site

-2.8 meV (b) -2.0 meV (c)

2.8 meV (e)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

(a)

Ωe
(1)

Ωo
(1)

Ωo
(2)

Ωe
(2)

FIG. 4: (a) DOS as a function of frequency. Inset: Spatial

plot of |φ
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14 |

2. (b)-(e) Plot of the DOS for the odd [(b) and
(e)] and even [(c) and (d)] impurity bound states.

the location of the quantum candles.

This interplay can be further studied by placing three
magnetic impurities with parallel spins at the corners
of an equilateral triangle at r1 = (−10,−10), r2 =
(20,−10), and r3 = (−10, 20). Since the degeneracy of
the impurity bound states is again lifted via quantum
interference, we expect to find six peaks in the DOS. In-
stead, the DOS exhibits four peaks, as shown in Fig. 5(a),
corresponding to the presence of only two non-degenerate
impurity states. This reduction to two impurity states
arises from a new type of selection rule that is based on an
interplay between the corral geometry and the location of
the quantum candles. Under a rotation of 2π/3 around
the corral’s center, φlm, and hence the corral eigenmodes,
transform as φlm → exp[i2π(m+ l)/3]φlm. Due to their
geometry the non-degenerate impurity bound states pos-
sess the same transformation properties, and their forma-
tion thus requires that they couple to eigenmodes with
n = (m+l)mod3 = 1, 2, 3. However, the eigenmodes with
n = 1 are at energies |E(m,l)| À ∆0, thus preventing the
creation of an impurity bound state with n = 1. As a
result, only the bound states with n = 0 [Figs. 5(c) and
(d)] and n = 2 [Figs. 5(b) and (e)] are formed via their
coupling to the (2, 4)- [Fig. 1(c)] and (1, 4)-eigenmodes
[Fig. 1(d)], respectively.

More complex corral structures can be employed to
project quantum images “around the corner”. To demon-
strate this, we insert a triangular corral with 42 non-
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FIG. 5: (a) DOS as a function of frequency. (b)-(d) Spatial
plot of the DOS for the impurity bound state with n = 2 [(b)
and (e)] and n = 0 [(c) and (d)].
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FIG. 6: Eigenmodes in a double triangular quantum corral
embedded in the normal state. (c),(d) Spatial DOS plot for

two different locations of a magnetic impurity with (c) Ω
(2)
b

=

1.6 meV and (d) Ω
(2)
b

= 3.1 meV.

magnetic impurities (Ui = 4 eV) into the corral discussed
above. In the normal state, two eigenmodes of this double
corral [see Figs. 6(a) and (b)] possess energies that ren-
der them relevant for the formation of quantum images.
By placing a magnetic impurity (Ji = 2 eV) between the
apices of the triangles in the SC state [Fig. 6(c)] a quan-
tum image is formed “around the corner” in the center
of the triangles’ bases. Similarly, a quantum image is
created near the apex by placing the magnetic impurity
between the triangles’ bases [Fig. 6(d)]. Note the sig-
nificant shift in Ωb when the position of the impurity is
changed. This result opens the interesting possibility to

custom design the imaging properties of quantum corrals
to form mirages at arbitrary locations.

Finally, we note that the qualitative features of our
results presented above are robust against changes in the
band parameters or ∆0, as long as ξc is larger than the
size of the corral. Moreover, whether a Kondo-effect can
at all occur inside a corral, and how it is affected by
the corral’s eigenmodes, is an interesting but non-trivial
question whose study we reserve for future work [15].

In summary, we demonstrate that the eigenmode spec-
trum of a triangular quantum corral can be employed (i)
to create multiple images of a quantum candle, and (ii) to
suppress the formation of impurity bound states. We ob-
tain new selection rules for quantum imaging that arise
from the interplay of the corral’s geometry and the lo-
cation of quantum candles. Finally, we show that more
complex nanostructures allow the projection of quantum
images “around the corner”.
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