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We demonstrate that quantum interference of electronic waves that are scattered by multiple
magnetic impurities in an s-wave superconductor gives rise to novel bound states. We predict that
by varying the inter-impurity distance or the relative angle between the impurity spins, the states’
quantum numbers, as well as their distinct frequency and spatial dependencies, can be altered.
Finally, we show that the superconductor can be driven through multiple local crossovers in which
its spin polarization, 〈sz〉, changes between 〈sz〉 = 0, 1/2 and 1.

PACS numbers: 72.10.Fk, 71.55.-i, 74.25.Jb

Over the last two years, several beautiful experiments
have studied quantum interference of electronic waves
that are scattered by multiple impurities [1–4]. In a
groundbreaking experiment, Manoharan et al. [1] used
a corral of magnetic impurities on the surface of a metal-
lic host to demonstrate that quantum interference can
lead to the focusing of electronic waves into a quantum
image. Moreover, using scanning tunneling spectroscopy
(STS), Derro et al. [2] were the first to observe four res-
onance states in the local density of states (DOS) of the
one-dimensional chains in YBa2Cu3O6+x. These states
were interpreted as arising from quantum interference of
electronic waves scattered by two magnetic impurities [5].
Quantum interference effects were also studied in optical
quantum corrals by Chicanne et al. [3] and between im-
purities located on quantum dots by Holleitner et al. [4].
Some first theoretical work [6] has focused on impurity
geometries in metallic systems similar to the one studied
by Manoharan et al. In contrast, quantum interference
in strongly correlated electron systems, such as super-
conductors (with the exception of NbSe2 [7]), charge- and
spin-density-wave systems, or even semi-conductors, have
not yet been addressed. However, the study of interfer-
ence effects in theses systems involving spin impurities
is not only of great fundamental interest, but might also
possess important applications in the field spin electron-
ics [8] and quantum information technology [9].

In order to describe the properties of complex impurity
structures such as quantum corrals, it is first necessary to
understand interference effects associated with the pres-
ence of few impurities. In this Letter we therefore con-
sider two impurities embedded in a general s-wave super-
conductor (SC). The presence of two magnetic impurities
allows for a coupling of the bound states associated with
a single impurity [10], and gives rise to the emergence
of novel many-body states. We show that the nature of
these novel states, i.e., their quantum numbers, can be al-
tered by varying the distance between the two impurities,
∆r, or the relative angle between the directions of their
spin moments, α. Moreover, we demonstrate that these
changes are accompanied by local crossovers in which

the spin polarization of the superconductor changes be-
tween 〈sz〉 = 0, 1/2, and 1. We predict that the inter-
play between the states’ quantum numbers and the inter-
impurity distance determines the distinct frequency and
spatial dependence of the two-impurity bound states. Fi-
nally, we discuss the implications of our work for systems
with a larger number of impurities.

Starting point for our calculations is the T̂ -matrix for-
malism [10] which we generalized to treat the case of
N impurities of spin S with non-magnetic and magnetic
scattering potentials [5, 11]. In the following, we focus
on the case N = 2, and, following Ref.[10], treat the
impurity spins as classical, static variables, correspond-
ing to the limit β0 = JS/2 = const. and S → ∞. In
a fully gaped s-wave SC, this approximation is well jus-
tified since no Kondo-effect occurs for sufficiently small
coupling between the impurities and the delocalized elec-
trons. Within this approach, any interaction between the
impurities is only important to the extent that it deter-
mines the angle, α, between the direction of the impu-
rity spins. Within the Nambu-formalism and in Matsub-
ara frequency space the electronic Greens function in the
presence of N impurities is given by

Ĝ(r, r′, ωn) = Ĝ0(r, r′, ωn)

+
N∑

i,j=1

Ĝ0(r, ri, ωn)T̂ (ri, rj , ωn)Ĝ0(rj , r
′, ωn) , (1)

where the T̂ -matrix is obtained from the Bethe-Salpeter
equation

T̂ (ri, rj , ωn) = V̂riδri,rj

+V̂ri

N∑

l=1

Ĝ0(ri, rl, ωn)T̂ (rl, rj , ωn) . (2)

In the case of two impurities

V̂r1 =
1
2

(U1σ0 + J1Sσ3) τ3 ;

V̂r2 =
1
2

(U2σ0 + J2Sσ3 cosα + J2Sσ1 sin α) τ3 ;

Ĝ−1
0 (k, iωn) = [iωnτ0 − εkτ3] σ0 + ∆kτ2σ2 . (3)
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FIG. 1: DOS for the clean case (solid line), a single impurity
(dashed line), and two impurities (dotted line) for β0 = 300
meV. For (b) and (c) the DOS is shown at the impurity site.

Here, V̂r1,r2 is the scattering matrix for the impurities
located at r1 and r2, respectively. Without loss of gen-
erality, we take the spin of impurity 1 to be parallel to
the ẑ-axis, while that of impurity 2 is rotated from the
ẑ-axis into the zx-plane by an angle α. Ĝ0(k, iωn) is the
Greens function of the unperturbed (clean) system in mo-
mentum space, and σi, τi are the Pauli-matrices in spin
and Nambu-space, respectively. Ui and Ji are the poten-
tial and magnetic scattering strengths of the impurities.
We consider a two-dimensional (2D) electronic system
whose normal state dispersion is given by εk = k2/2m−µ
(h̄ = 1), where µ = k2

F /2m is the chemical potential, and
kF = π/2 is the Fermi wave-vector (we set the lattice con-
stant a0 = 1). The results and conclusions presented be-
low are qualitatively robust against changes in the form of
εk, the dimensionality of the s-wave SC, or the size of the
momentum-independent SC gap, ∆0. For definiteness we
set µ = 370 meV and m−1/∆0 = 15, but quantitatively
similar results are obtained for m−1/∆0 = 30. The DOS,
N(r, ω), presented below is obtained from a numerical
computation of Eqs.(1)-(3) with N(r, ω) = A11 + A22

and Aii(r, ω) = −Im Ĝii(r, ω + iδ)/π.
For a single magnetic impurity in an s-wave SC, the

T̂ -matrix possesses poles at frequencies ω
(1,2)
res , reflecting

the presence of two bound states. The spectroscopic ev-
idence for these bound states are two peaks in the DOS,
as shown in Fig. 1, where we present the DOS obtained
from Eqs.(1)-(3) at the impurity site; for comparison, we
also plot the DOS of the clean system. These results
are in general agreement with those of STS experiments
[12], which provides further support for the validity of
the T̂ -matrix approach. Assuming for definiteness that
the impurity spin S‖ẑ and J > 0, we find that the bound
state at ω

(1)
res < 0 (ω(2)

res > 0), which we denoted by |p, ↓〉
(|h, ↑〉), is particle-like (hole-like) with spin along the −z-
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FIG. 2: (a) Spatial dependence of peak (1) and (2) in the
DOS along the x̂-axis (R = (r, 0)) for two magnetic impurities
located at r = 0 and r = 2 with parallel spins. Inset: Spatial
dependence of the DOS at ω = ±∆0. (b) Same as (a) but
with impurities located at r = 0 and r = 4.

direction (+z-direction).
We next consider two magnetic impurities with parallel

spins, Ui = 0 and Ji = J . For ∆r = ∞, the two sets
of bound states given by |p, ↓, i〉 and |h, ↑, i〉 (i = 1, 2)
are degenerate. However, for ∆r < ∞, the probability
that an electron scattered by one of the impurities is also
scattered by the second one is non-zero. Hence, quantum
interference of electronic waves that are scattered by both
impurities leads to the formation of novel even and odd
(or bonding and anti-bonding) states, |p, ↓〉e,o = (|p, ↓
, 1〉 ± |p, ↓, 2〉)/√2, and similarly for the hole-like states.
This picture is confirmed by the numerically computed
DOS shown in Fig. 1 for two impurities located at r1 =
(0, 0) and r2 = (2, 0), and β0 = 300 meV (the DOS
shown is that on one of the impurity sites). As expected,
the DOS exhibits four mid-gap peaks with peak (1), (2)
corresponding to the particle-like states |p, ↓〉e,o and peak
(3), (4) to the hole-like states |h, ↑〉e,o.

To determine which peaks in the DOS correspond to
the even and odd states, we plot in Fig. 2a the spatial
dependence of the particle-like states (1) and (2) along
the x̂−axis with R = (r, 0) (the location of the impuri-
ties at r = 0 and r = 2 are indicated by arrows). Since
the DOS of the odd states vanishes by symmetry at the
midpoint between the two impurities, i.e., at r = 1, peak
(2) and (1) correspond to the odd and even particle-like
states, respectively. Note that their spatial dependence is
remarkably different: while the odd state exhibits oscilla-
tions well beyond the two impurity region, the even state
is primarily confined to the region between the two impu-
rities. This qualitative difference is associated with the
(kF r)-oscillations of the |p, ↓, i〉-states. Since kF = π/2
and ∆r = 2, the wave-functions of |p, ↓, 1〉 and |p, ↓, 2〉
are shifted by a phase ∆φ = kF ∆r = π outside the two-
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FIG. 3: ωres for the even (solid line) and odd state (dotted
line) as a function of ∆r for parallel impurity spins and (a)
β0 = 300 meV; (b) β0 = 400 meV; and (c) β0 = 600 meV.
The ranges of ∆r with 〈sz〉 = 1/2 are indicated by arrows. (d)
Local spin polarizations, sz(r), along the x̂-axis, for α = 0.

impurity region (r > 2 in Fig. 2a) and their spatial os-
cillations are consequently out-of-phase. Thus, |p, ↓, 1〉
and |p, ↓, 2〉 interfere destructively for |p, ↓〉e, and only
weak spatial oscillations are observable in the DOS for
r > 2. In contrast, |p, ↓〉o shows constructive interfer-
ence of |p, ↓, i〉 (i = 1, 2) and its spatial oscillations are
enhanced for r > 2. By changing the inter-impurity dis-
tance to ∆r = 4 , with ∆φ = 2π, the interference pattern
between the even and odd states is exchanged, and |p, ↓〉e
(|p, ↓〉o) now exhibits strong (weak) oscillations beyond
the two impurity region, r > 4, as shown in Fig. 2b.

In Fig. 3 we present the bound state energies of the
states |p, ↓〉e,o as a function of ∆r for α = 0 (the frequen-
cies of the |h, ↑〉e,o-states are obtained via ωres → −ωres).
The amplitude of the oscillations in ωres decays as
∆r−d/2e∆r/ξ in d-dimensions, but since ξ > vF /∆0 ≈ 20,
the exponential decay is barely perceivable in Fig. 3. The
oscillations’ spatial period, 1/kF , directly reflects that of
the (kF r)-oscillations in the wave-functions of |p, ↓〉e,o, in
contrast, to the (2kF r)-oscillations of the DOS. For cer-

tain ∆r, the splitting between the even and odd states
vanishes and the two sets of bound states are decoupled.
This decoupling arises whenever the bound state wave-
functions of one impurity possess a node at the position
of the other impurity. The same type of oscillations were
obtained in Ref.[7] for the case of NbSe2.

At small ∆r, the bound state energy of |p, ↓〉e crosses
zero, and the state becomes hole-like, |h, ↓〉e (at the
same time, the state |h, ↑〉e transforms into |p, ↑〉e). We
find that this zero-crossing of ωres is accompanied by a
crossover in the spin-polarization of the superconducting
system which at T = 0 is given by

〈sz〉 =
1
2

∫
d2r

∫ 0

−∞
dω [A11(r, ω)−A22(r, ω)] . (4)

This crossover is similar to the one predicted to occur
when the scattering strength, β0, of a single magnetic im-
purity in an s-wave SC exceeds a critical value, βc [11, 13]
(for the band parameters chosen, we obtain βc ≈ 460
meV). At this point, the impurity breaks a Cooper-pair
and forms a bound state with one of its electrons. Specif-
ically, for S‖ẑ and J > 0, the spin polarization changes
from 〈sz〉 = 0 for β < βc, to 〈sz〉 = 1/2 for β > βc. Sim-
ilarly, for β0 > βc/2, the system undergoes a crossover
at ∆rc, and for ∆r < ∆rc one electron of the broken-up
Cooper-pair forms a single bound state with both impu-
rities. For ∆r → 0, the DOS reduces to that of a single
magnetic impurity with scattering strength 2β0. Accord-
ingly, |p, ↑〉o moves towards the particle-hole continuum
and vanishes for ∆r ≡ 0. Finally, a comparison of Fig. 2
and Fig. 3a shows that, as expected, the spatially more
confined bound state possesses a larger |ωres| than the
spatially more extended one.

As β0 approaches βc from below, the number of
crossovers increases, as shown in Fig. 3b for β0 =
400meV ≈ 0.87βc. Due to the oscillatory behavior of
ωres, the bound state energy of the ↓-state crosses zero for
several value of ∆rc. As a result, the spin-polarization os-
cillates between 〈sz〉 = 0 and 1/2 and the electronic sys-
tem can be tuned through multiple crossovers by varying
∆r. The same tuning could also be achieved by keep-
ing ∆r constant and altering kF through changes in the
doping level using recently developed field-effect transis-
tor geometries [14].

For β0 ≥ βc the superconductor exhibits a different
crossover in which its spin polarization changes from
〈sz〉 = 1 to 〈sz〉 = 1/2. For ∆r = ∞, each impurity
breaks one cooper pair and the spin polarization of the
superconducting system is 〈sz〉 = 1. As ∆r decreases,
one of the bound state energies crosses zero at least once,
as shown in Fig. 3c where we present ωres for the ↓-states
and β0 = 600meV > βc. Accordingly, 〈sz〉 changes from
1 to 1/2. Since for ∆r → 0, the odd bound state vanishes
by symmetry, the spin polarization reaches 〈sz〉 = 1/2 for
any value of β0 ≥ βc.
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FIG. 4: ωres as a function of the angle, α, between the direc-
tion of the impurity spins for ∆r = 1 and β0 = 400 meV.

Changes in 〈sz〉 are also reflected in the spatially re-
solved spin polarization, sz(r) =

∫ 0

−∆
dω(A11 − A22),

which due to the limited frequency integration is experi-
mentally more easily accessible. In Fig. 3d, we plot sz(r)
along R = (r, 0) for two impurities located at r = 0
and r = 2 and 〈sz〉 = 0, 1/2, and 1, corresponding to
β0 = 300, 400 and 800 meV, respectively. For 〈sz〉 = 0,
the spin polarization near the impurities is negative, as
expected for S‖ẑ and J > 0. For 〈sz〉 = 1/2, both im-
purities form a single bound state with an electron in
the | ↓〉o-state (see Figs. 3b). Thus, sz(r) is substan-
tially increased at the impurity sites, but remains prac-
tically unchanged at r = 1. In contrast, for 〈sz〉 = 1, the
electron from the second broken Cooper-pair joining the
two-impurity bound state is in the | ↓〉e-state, and con-
sequently, sz(r) increases primarily around r = 1. Note,
that for two impurities separated by ∆r = 4, the first
electron to join the two-impurity bound state is in the
| ↓〉e-state, while the second one is in the | ↓〉o-state,
with corresponding changes in sz(r).

The superconducting system can also be tuned through
a crossover by changing the angle, α, between the two
impurity spins, as shown in Fig. 4, where we plot ωres

for all four bound states as a function of α (the impu-
rities are located at r1 = (0, 0) and r2 = (1, 0)). Since
we choose β0 = 400 meV > βc/2 we have 〈sz〉 = 1/2
for α = 0, corresponding to the vertical dashed line in
Fig. 3b. As α increases from zero, the frequencies of the
even bound states move towards ω = 0 which they cross
zero at α ≈ 0.27π. Simultaneously the spin polarization
changes from 〈sz〉 = 1/2 to 〈sz〉 = 0. The frequency
separation between the even and odd states of a given
spin direction decreases with increasing α and vanishes
at α = π. This is expected since for antiparallel impurity
spins (α = π), the bound states for impurity 1 (|p, ↓, 1〉
and |h, ↑, 1〉) and impurity 2 (|p, ↑, 2〉 and |h, ↓, 2〉) possess
different quantum numbers; thus they cannot be coupled
and remain degenerate. However, since the bound states
of one impurity are subjected to the repulsive potential
of the second impurity, their resonance frequencies are
larger than those of a single impurity with the same β0

(indicated by the arrows on the right). This repulsion
leads to the disappearance of all bound states for ∆r → 0.

Finally, a non-zero U transfers spectral weight between
the particle- and hole-like states and increases βc, but
does not affect our above conclusions. Moreover, a self-
consistent approach that allows for a gap suppression
near the magnetic impurity does not change the quali-
tative features of the DOS discussed above [11], in agree-
ment with experiment [12].

The results presented above suggest that a supercon-
ducting system with N impurities and β0 > βc/N can
be tuned through multiple crossovers with spin polariza-
tions ranging from 〈sz〉 = 0 to N/2, depending on β0,
the inter-impurity distances, and the angles between the
spin moments. Work is currently under way to study
these crossovers in more complex impurity geometries,
such as quantum corrals, as well as the extensions to
other host materials, such as unconventional SC, charge-
density-wave systems, or semi-conductors [15].

In summary, we show that quantum interference of
electronic waves scattered by two magnetic impurities in
an s-wave SC gives rise to novel bound states. We predict
that by varying the inter-impurity distance or the angle
between the impurity spins, the states’ quantum num-
bers can be altered, and the SC can be driven through
multiple local crossovers in which its spin polarization
changes between 〈sz〉 = 0, 1/2 and 1.
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