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We study quantum interference of electronic waves that are scattered by multiple non-magnetic
impurities in a dx2−y2 -wave superconductor. We show that the number of resonance states in the
density-of-states (DOS), as well as their frequency and spatial dependence change significantly as
the distance between the impurities or their orientation relative to the crystal lattice is varied. Since
the latter effect arises from the momentum dependence of the superconducting gap, we argue that
quantum interference is a novel tool to identify the symmetry of unconventional superconductors.
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Over the last few years, the study of impurities in
unconventional superconductors has attracted consider-
able theoretical1–4 and experimental5–7 attention. In
particular, a series of groundbreaking scanning tun-
neling microscopy (STM) experiments has provided
detailed information on the density-of-states (DOS)
near single non-magnetic5 and magnetic6 impurities in
Bi2Sr2CaCu2O8+δ, a high-temperature superconductor
(HTSC). Of particular interest is the experimentally ob-
served emergence of resonance states near the impuri-
ties. Several theoretical scenarios have been proposed
that ascribe the origin of these resonances to electronic
scattering off classical impurities with magnetic and
non-magnetic scattering potentials1–3 or to the Kondo-
screening of a local spin polarization that is induced by
non-magnetic impurities4. At the same time, a different
line of beautiful experiments studied quantum interfer-
ence of electronic waves that are scattered by multiple im-
purities. In particular, Manoharan et al.8 demonstrated
that quantum interference in a corral of magnetic impu-
rities arranged on the surface of a metallic host leads to
the focusing of electronic waves into a quantum image; a
result that has recently been addressed in several theoret-
ical studies9. Similar quantum interference experiments
using unconventional superconductors can be expected
in the future. First evidence for quantum interference in
the HTSC was recently reported by Derro et al.7 in the
one-dimensional chains of YBa2Cu3O6+x.
Motivated by the experimental progress in this field,

we present in this article a theoretical model which com-
bines the study of impurities in unconventional super-
conductors with that of quantum interference effects. In
particular, generalizing the formalism presented in1,2,10,
we investigate the electronic structure in the vicinity of
two non-magnetic impurities in a dx2−y2-wave supercon-
ductor. We show that quantum interference due to the
presence of a second impurity dramatically changes the
DOS obtained near a single impurity. In particular, we
demonstrate that the number of resonance states in the
DOS, as well as their frequency and spatial dependence
change significantly as the distance between the impuri-
ties or their orientation relative to the crystal lattice is
varied. Since the latter effect arises from the momen-

tum dependence of the superconducting gap, we argue
that quantum interference is a novel tool to identify the
symmetry of unconventional superconductors. This re-
sult might be of particular importance for Sr2RuO4, an
unconventional superconductor whose symmetry is still
a topic of controversy11. While the study of quantum
interference is not only of fundamental importance for
our understanding of complex impurity structures, it can
also clarify the origin of the resonances observed in the
HTSC. In particular, we expect that the form of the res-
onances arising from Kondo-screening of two magnetic
impurities is different from those discussed below; work
is currently under way to verify this conjecture12.
Starting point for our calculations is the T̂ -matrix

formalism13 which we extended to treat scattering off
multiple impurities1,10 in a dx2−y2-wave superconductor.
Quantum interference in s-wave superconductors was re-
cently discussed in Refs.14,15. For simplicity we restrict
our considerations to two non-magnetic impurities; our
formalism, however, allows the study of an arbitrary, but
finite number of impurities. The study of more complex
impurity structures, as well as that of magnetic impu-
rities, will be the focus of future work12. Within the
Nambu-formalism and for Matsubara frequencies, ωn,
the electronic Greens function in the presence of N im-
purities is given by

Ĝ(r, r′, ωn) = Ĝ0(r, r
′, ωn)

+

N
∑

i,j=1

Ĝ0(r, ri, ωn)T̂ (ri, rj , ωn)Ĝ0(rj , r
′, ωn) , (1)

where the T̂ -matrix is obtained from the Bethe-Salpeter
equation

T̂ (ri, rj , ωn) = V̂ri
δri,rj

+V̂ri

N
∑

l=1

Ĝ0(ri, rl, ωn)T̂ (rl, rj , ωn) . (2)

For two non-magnetic impurities located at ri (i = 1, 2)
with ∆r = |r2− r1|, the scattering matrices are given by

V̂ri
= Ui τ3/2 with Ui being the non-magnetic scatter-

ing potential and τ the Pauli-matrices in Nambu-space.
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The Greens function of the unperturbed (clean) system
in momentum space is given by

Ĝ−1
0 (k, iωn) = [iωnτ0 − εkτ3]−∆kτ1 . (3)

For the electronic excitation spectrum in the normal state
we take a form that is characteristic of an optimally
doped HTSC16–18 and given by

εk = −2t
[

cos(kx) + cos(ky)
]

− 4t′ cos(kx) cos(ky)− µ ,

(4)
with t = 300 meV, t′/t = −0.4 as the nearest and next-
nearest neighbor hopping integrals, respectively, and a
chemical potential µ/t = −1.18, corresponding to 14%
hole doping. Moreover, the superconducting gap with
dx2−y2-symmetry is given by ∆k = ∆0 [cos kx − cos ky] /2
with ∆0 = 25 meV17. Our results presented below are
qualitatively robust against changes in the form of εk,
or the size of ∆0. We obtain the DOS, N(r, ω), from a
numerical evaluation of Eqs.(1)-(3) with N(r, ω) = A11+

A22 and Aii(r, ω) = −Im Ĝii(r, ω + iδ)/π.
We briefly review some important features in the DOS

near a single non-magnetic impurity in a dx2−y2-wave

superconductor1,2. The resulting diagonal T̂ -matrix

T̂11,22 =
±U0

1− U0 G0(r = 0,±ω)
(5)

where the upper (lower) sign applies to T̂11(T̂22) and

G0 = [Ĝ0]11, exhibits a particle- (ωres < 0) and hole-
like (ωres > 0) resonance. These resonances give rise
to sharp peaks in the DOS only in the unitary limit
(|ωres|/∆0 ¿ 1) where U−1

0 = ReG0(0,±ωres).

In the presence of two impurities, the T̂ -matrix, Eq.(2),
is rather complex. However, in the limit F0(∆r, ω) ¿

G0(∆r, ω), where F0 = [Ĝ0]12 and for identical impurities

with U1,2 = U0, the T̂ -matrix simplifies considerably and
is again diagonal. Defining

S±(ω) = {1− U0 [G0(0, ω)±G0(∆r, ω)]}
−1

(6)

one obtains (i 6= j)

T̂11,22(ri, ri) = U0 [S+(±ω) + S−(±ω)] /2

T̂11,22(ri, rj) =
U0 G0(∆r,±ω)

1− U0G0(0,±ω)
T̂11,22(ri, ri) (7)

where the upper (lower) sign applies to T̂11(T̂22). By

comparing the T̂ -matrices in Eqs.(5) and (7), we find that
the presence of a second impurity splits the resonances
of the single impurity case by U0G0(∆r, ω). Note that
G0(∆r, ω) does not only change with varying ∆r, but
also with the angle, α, between r2 − r1 and the crystal
x̂-axis, due to the momentum dependence of the super-
conducting gap. Consequently, the energy and lifetime
of the resonances depend on ∆r and α. While all four
S±-terms in Eq.(7) can possess resonances, those that are
shifted to higher energies are highly overdamped and give
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FIG. 1: DOS at R = (0, 0) as a function of ∆r for two identi-
cal impurities with U0 = 700 meV located at r1 = (0, 0) and
r2 = (∆r, 0). The lattice constant is set to a0 = 1.

rise only to oscillations in the DOS without the signature
of a sharp peak.

In what follows, we consider two identical impurities
with scattering potential U1,2 = U0 = 700 meV, corre-
sponding to the unitary limit, in agreement with Refs.1,2.
While the specific form of the DOS changes with U0, its
qualitative features remain unchanged. To study the ef-
fects of α and ∆r on the DOS separately, we first consider
for definiteness two impurities located along the crystal
x̂-axis at r1 = (0, 0) and r2 = (∆r, 0) with α = 0. In
Fig. 1, we present the DOS at R = (0, 0), i.e., at one of
the impurity sites, as a function of ∆r. For comparison,
we note that for a single impurity with U0 = 700 meV,
the resonances are located ωres = ±1.5 meV. As ∆r is
varied, the DOS undergoes strong modifications. In par-
ticular, the frequency of the resonances oscillates and at
the same time, their energy width, or lifetime, changes.
For a single impurity, the resonance frequency and width
are correlated, such that as |ωres| decreases, the fre-
quency width decreases as well1,2. In the case of two
impurities, we find that |ωres| and the lifetime of the res-
onances are not necessarily correlated. For example, the
resonance frequencies for both ∆r = 2.0 and ∆r = 3.5
are ωres = ±4.0 meV, but the width of the resonances
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FIG. 2: DOS as a function of spatial position R = (R, 0) for
two impurities with U0 = 700 meV located at r1 = (0, 0) and
r2 = (∆r, 0) with (a) ∆r = 2 and (b) ∆r = 7.

are considerably larger in the second case. Moreover, for
some values of ∆r, all resonances are very weak and, e.g.,
for ∆r ≈ 1 disappear almost completely. Note, that even
for rather large values of ∆r ≈ 10, the DOS at R = (0, 0)
is still affected by quantum interference and thus different
from that obtained in the single impurity case. This re-
sult bears important implications for the interpretation
of recent STM experiments5–7 since it implies that the
DOS near impurities in the two-dimensional HTSC can
only be described within the single impurity framework
if the impurity concentration is well below 1%.

An additional important result of Fig. 1 is that the
number of observable low-energy resonances changes with
∆r. In particular, for ∆r ≤ 6, only two sharp low-energy
resonances can be clearly identified. This effect becomes
particularly evident when one considers the spatial de-
pendence of the DOS for fixed ∆r, as shown in Fig. 2.
Here, we plot the DOS as a function of R = (R, 0) for two
impurities located at r1 = (0, 0) and r2 = (∆r, 0). The
uppermost curve corresponds to the midpoint between
the two impurities, the dashed line represents the DOS at
r2. For ∆r = 2 (Fig. 2a), there exist only two low-energy
resonances at ωres ± 4 meV. In contrast, for ∆r = 7
(Fig. 2b), we find two broader resonances at ωres = ±3
meV, and two sharper resonances at ωres = ±0.25 meV.
Note, that the resonances for ∆r = 2 at ωres±4 meV have
a considerably larger amplitude than those for ∆r = 7 at
ωres = ±3 meV. This result again differs from the sin-
gle impurity case, where the resonance with the smaller
|ωres| always possesses a larger amplitude in the DOS.

While sharp resonances can only be identified for
ωres ¿ ∆0, oscillations in the DOS exist for basically
all energies |ω| ≤ ∆0. To study these oscillations in more
detail, we present in Fig. 3 the DOS along R = (R, 0) for
various frequencies and the same impurity arrangement
as in Fig. 2a; the locations of the impurities are indicated
by arrows. The solid and dashed lines in Fig. 3a represent
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FIG. 3: (DOS along R = (R, 0) for the same impurity ar-
rangement as in Fig. 2a. The positions of the impurities
are indicated by arrows. (a) DOS at ωres = ±4 meV. The
open and filled squares present the DOS at ωres = ±4 meV
along the lattice diagonal with R = (R, R). Inset: DOS along
R = (R, 0) for a single impurity at its resonance frequency
ωres = ±1.5 meV. (b) DOS at frequencies |ωres| < |ω| < ∆0.

the DOS at ωres = ±4 meV, corresponding to peak (1)
and (2) in Fig. 2a. The DOS at |ωres| but along the lat-
tice diagonal, i.e., for R = (R,R), is shown as open and
filled squares. Similar to the single impurity case, the
amplitude of the resonances is much weaker along the
direction of the superconducting gap nodes, than along
the anti-nodal direction. The inset shows the DOS along
R = (R, 0) for a single impurity with U0 = 700 meV
and resonance energy ωres = ±1.5 meV. A comparison
shows that the amplitude of the DOS oscillations induced
by two impurities is much larger than those induced by
a single impurity (the overall scale in the inset is three
times smaller than in the main figure). Moreover, in the
two impurity case, the DOS exhibits significant oscilla-
tions at much larger distances from the impurities than
in the single impurity case. This is particularly evident
when comparing the particle-like resonances, where in
the two impurity case, the amplitude of the oscillations
is still large at a distance to the nearest impurity, rn, of
about rn ≈ 4−5, while in the single-impurity case, the os-
cillations are already substantially reduced at rn ≈ 2. In
Fig. 3b we present the DOS along R = (R, 0) for several
frequencies with |ωres| < |ω| < ∆0. While there exist no
evidence for a resonance at higher energies, we still find
considerable oscillations in the DOS. As |ω| decreases,
the wave-vectors of these oscillations decreases, as can
clearly be seen from the shift of the peaks around R = 3
and 4. Thus, the DOS oscillations exhibit a dispersion,
similar to the results obtained in Ref.7.

Due to the momentum dependence of the supercon-
ducting dx2−y2-gap, the DOS changes when the orien-
tation of the two impurities with respect to the crystal
lattice is varied. In particular, since the gap vanishes
along the lattice diagonal, we expect the largest devia-



4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

clean
r2=(3,3) 
r2=(4,0) 

R=(0,0)
D

en
si

ty
 o

f S
ta

te
s 

[a
rb

. u
ni

ts
]

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Frequency  [meV]

R=(1,0)(b)

(a)

r1=(0,0) 

r1=(0,0) 
clean
r2=(3,3) 
r2=(4,0) 

FIG. 4: DOS at (a) R = (0, 0) and (b) R = (1, 0) for two
impurities with U = 700 meV. One impurity is located at
r1 = (0, 0), the other one either at r2 = (3, 3) (dotted line) or
at r2 = (4, 0) (dashed line).

tions from the results for α = 0 shown in Figs. 1-3 when
the impurities are located along the lattice diagonal, i.e.,
for α = π/4. To study the changes in the DOS due to
variations in α and to eliminate effects due to a varying

∆r, we chose two different impurity arrangements which
can be realized experimentally, and possess almost iden-
tical values for ∆r. In the first case, the impurities are
located along the lattice diagonal (α = π/4) at r1 = (0, 0)
and r2 = (3, 3) (dotted line, ∆r ≈ 4.2). In the second
arrangement, the impurities are aligned along the crystal
x̂-axis (α = 0) at r1 = (0, 0) and r2 = (4, 0) (dashed line,
∆r = 4). We verified that the DOS for r2 = (4.2, 0),
which would yield identical values of ∆r, but is experi-
mentally not realizable, differs only slightly from that for
r2 = (4, 0). The DOS at R = (0, 0) and R = (1, 0) is
shown in Fig. 4. While the DOS for α = π/4 possesses
three distinct resonances, only two resonance peaks are
observable for α = 0. Moreover, for α = 0, the reso-
nance states are located at higher frequencies and are
much broader. The qualitative differences in the DOS
between these two different impurity arrangements can
be directly traced back to the vanishing of F (∆r, ω) for
α = π/4, and its finite, complex value for α = 0. Thus,
the symmetry of the superconducting gap is directly re-
flected in the changes which the DOS undergoes when the
orientation of the impurities relative to the crystal lattice
is varied. This dependence provides a new tool to identify
the symmetry of unconventional superconductors.

In summary, we studied quantum interference of elec-
tronic waves that are scattered by two non-magnetic im-
purities in a dx2−y2-superconductor. We show that the
number of resonance states in the DOS, as well as their
frequency and spatial dependence changes significantly as
the distance between the impurities or their orientation
relative to the crystal lattice is varied. The latter result
provides a novel tool to identify the symmetry of uncon-
ventional superconductors, such as Sr2RuO4, where the
symmetry of the superconducting state is still a topic of
controversy.
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